Ontological requirement specification for smart irrigation system: a SSN and SAREF comparison

21

María POVEDA-VILLALÓN	Ontology Engineer ing <mark>G</mark> roup
Quang-Duy NGUYEN Catherine ROUSSEY Jean-Pierre CHANET	irstea
Christophe de VAULX	

Workshop SSN 2018, Monterey, 9th October 2018

2 **21**

Plan

- 1. Introduction
- 2. Context-aware Systems
- 3. Sensor Ontologies
- 4. Use Case: automatic Irrigation

SSN-2018 Monterey October 2018

5. Conclusion

- 1. Introduction
- 2. Context-aware Systems
- 3. Sensor Ontologies
 - 3.1. Semantic Sensor Network (SSN)
 - 3.2. Smart Appliances REFerence (SAREF)
- 4. Use Case : automatic Irrigation
 - 4.1. IRRINOV® Method
 - 4.2. Requirements
 - 4.3. SSN and SAREF comparison
- 5. Conclusion

Introduction

Farmer Needs

• Decisions are made based on natural phenomenon observations: soil, crop growth stage, rain, etc.

Smart Irrigation System:

- Automate irrigation
- Precision Agriculture: put the right dose at the right time in the right place
- Components:
 - Wireless Sensor Network (WSN)
 - Decision Support System (DSS)
 - Watering Equipment
 - Connexion between components \rightarrow data and services interoperability

1. Introduction

- 2. Context-aware Systems
- 3. Sensor Ontologies
- 4. Use Case: automatic Irrigation
- 5. Conclusion

SSN-2018

Monterey October 2018

Sensor Node and WSN

Monterey

October 2018

1. Introduction	"any information that can be used to characterize the situation of an entity . An entity could be a person, a place, or an object that is considered relevant to the interaction between a user and an application , including the user and applications themselves." (Abowd et al., 1999)
Context-aware Systems	Context: set of entities characterized by their state, plus all information that
3. Sensor	can help to derive any state changes of these entities
Ontologies	Types of entity:
4. Use Case: automatic Irrigation	 Observed Entity: entity that is directly observed by sensors. Entity of Interest: entity whose characterization is obtained from one or many other entities and required by the application.
5. Conclusion	Types of context:
	 Low-level context: quantitative data such as sensor measurements. High-level context: qualitative data which is specified according to the
SSN-2018	application. (Sun et al., 2016)

Sun, J., De Sousa, G., Roussey, C., Chanet, J.-P., Pinet, F., & Hou, K. M. (2016). *A new formalisation for wireless sensor network adaptive context-aware system: Application to an environmental use case*. In Tenth International Conference on Sensor Technologies and Applications SENSORCOMM 2016 (pp. 49–55). Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). *Towards a better understanding of context and*

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). *Towards a better understanding of context and context-awareness*. In H. W. Gellersen (Ed.), Handheld and Ubiquitous Computing, Proceedings (Vol. 1707, pp. 304–307). Berlin: Springer-Verlag Berlin.

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). *Towards a better understanding of context and context-awareness*. In H. W. Gellersen (Ed.), Handheld and Ubiquitous Computing, Proceedings (Vol. 1707, pp. 304–307). Berlin: Springer-Verlag Berlin.

Needs of Ontologies

Sensor Ontologies

	Ontology is " <i>a formal explicit specification of a shared conceptualization.</i> " (Studer et al., 1998)
1. Introduction	
2.Context-awareSystems3. SensorOntologies	Sensor Ontologies: SOSA/SSN, SAREF, CESN, CSIRO, Sensei O&M, OOSTethys, MMI, SWAMO, SEEK, SDO, SeReS O&M, OntoSensor, etc. (Bendadouche et al., 2012)
4. Use Case: automatic Irrigation5. Conclusion	 SSN (Semantic Sensor Network) SSN last version = SOSA/SSN W3C and OGC Recommendation (sosa) <u>http://www.w3.org/ns/sosa</u> (ssn) <u>http://www.w3.org/ns/ssn</u> SAREF (Smart Appliances REFerence)
SSN-2018 Monterey October 2018	 Standard from European Telecommunication Standardization Institute (ETSI) (saref) <u>https://www.w3id.org/saref</u>
	Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data & Knowledge Engineering. 25(1–2), 161–197

Bendadouche, R., Roussey, C., De Sousa, G., Chanet, J.-P., & Hou, K. M. (2012). Etat de l'art sur les ontologies de capteurs pour une intégration intelligente des données. INFORSID 2012, 89–104.

8

SSN and SAREF overview

 Introduction Introduction Context-aware Systems 	SSN - SSN is composed of several modules - Sensor, Observation, Sample, and Actuator (SOSA) is the central module of SSN - SSN is mapped to	Deployment Procedure	System Observatior	SystemProperty	Conditio	Feature n
3. Sensor I Ontologies I 4. Use Case: I automatic I	OBOE, DUL, etc	Result				
Irrigation				· · ·		
5. Conclusion SSN-2018	 SAREF SAREF provides a comodel for IoT it is extended in order cover specific domains. Extensions : SAREF4ENEI SAREF4ENEI DOMESTICATION 	re to Functio R,	n/Service	P	roperty	Profile
Monterey October 2018	SAREF4AGRI, etc. - SAREF is mapped OneM2M Base ontology.	to		Measurem	ent	

IRRINOV® Method (Arvalis, 2005)

1. Presentation

1. Introduction

Context-aware

Systems

3. Sensor

Ontologies

4. Use Case:

automatic

2.

- Human decision
- Set of guidelines and decision tables to determine the date for the next irrigation

21

- Depend: soil type and crop type
- 2. Location of probes and equipments
 - Irrinov station= 6 watermark probes
 - o 3 at 30 cm depth
 - 3 at 60 cm depth
 - 2 pluviometers: a mobile one + weather station

IRRINOV® Method (2)

- 3. Soil moisture measurement
 - **Measurement-cbar** = probe_value * correction_coefficient
- Checking constraint: **Measurement-cbar <= 199**
- **Probe30** = value reached by 2 probes out of 3 probes at 30 cm depth

21

Probe60 = value reached by 2 probes out of 3 probes at 60 cm depth

4. Installation time and measurement frequency

- Installation of watering equipments and sensors: when crop reaches the growth stage V2 or "2 leaves"
 - Uninstall equipements when crop reaches the growth stage R5 "grain at 50% humidity"
- Measurement starts: 2 or 3 days after equipment installation.
- Measurement is mandatory :
 - Before irrigation
 - 24h or 36h after one irrigation
 - After significant rainfall

1. Introduction

2. Context-aware Systems

3. Sensor Ontologies

4. Use Case: automatic Irrigation

SSN-2018 Monterey October 2018

5. Conclusion

IRRINOV® Method (3)

5. Decision table to run an irrigation turn

Several tables are proposed to determine when to run an irrigation

1. Introduction

2. Context-aware Systems

3. Sensor Ontologies

4. Use Case: automatic Irrigation

5. Conclusion

SSN-2018 Monterey

October 2018

Example of table: growth stage V7, (2) soil type: *clay-limestone*, (3) crop type: *maïze (corn grain)*

Time between two irrigation	9 to 10 days	6 to 8 days	below 5 days
Probe30	30 cbar	50 cbar	60 cbar
Probe60	10 cbar	20 cbar	20 cbar
Total	40 cbar	70 cbar	80 cbar

If ((8 < TimeIrrigation < 11) and (growthStage < V7) and (Probe30 + Probe60 >= 40))

Then (Irrigation.state = ON)

Ontological requirements

1. Introduction

2. Context-aware Systems

3. Sensor Ontologies

4. Use Case: automatic Irrigation

5. Conclusion

SSN-2018

Monterey October 2018

R1. Deployment R1.1. Deployment time **R1.2.** Deployment location R2. Plot **R3. Network configuration** R3.1. Network topology R3.2. Network communication R3.3. Node status R3.4. Node role R3.5. Node location **R4.** Device R4.1. Sensor R4.2. Actuator R4.3. System componency R4.4. Domain specific devices

R5. Measurement
R5.1. Domain specific units of measurement
R6. Property
R6.1. Domain specific properties
R7. Feature of interest
R7.1. Feature of interest depth
R8. Action
R8.1. Domain specific actions
R9. Crop

Requirements coverage using SSN

Requirements coverage using SAREF

Analysis (1)

October 2018

	Requirement	SOSA/SSN	SAREF
	R1. Deployment	ssn:Deployment	
1. Introduction	R1.1. Deployment time		
Context-aware Svstems	R1.2. Deployment location	(1)	
3. Sensor	R2. Plot	sosa:Platform	
Ontologies	R3. Network configuration		
4. Use Case:	R3.1. Network topology		
Irrigation	R3.2. Network communication		
5. Conclusion	R3.3. Node status		saref:State
	R3.4. Node role		saref:Task
SSN-2018	R3.5. Node location	(1)	
Monterey			

(1) SOSA/SSN recommends using geoSPARQL (Perry et Herring, 2012)

Perry M. & Herring J. (2012). Ogc geosparql-a geographic query language for rdf data. OGC implementation standard

Analysis (2)

1. Introduction
2. Context-aware Systems
3. Sensor Ontologies
4. Use Case: automatic Irrigation

5. Conclusion

SSN-2018

Monterey October 2018

Requirement	SOSA/SSN	SAREF
R4. Device	ssn:System	saref:Device
R4.1. Sensor	sosa:Sensor	saref:Sensor
R4.2. Actuator	sosa:Actuator	saref:Actuator
R4.3. System componency	ssn:hasSubSystem	saref:consistsOf
R4.4. Domain specific devices		
R5. Measurement	sosa:Observation (2)	saref:Measurement saref:UnitOfMeasure (3)
R5.1. Domain specific units of measurement		

(2) SOSA/SSN recommends using the following ontologies et vocabularies :

QUDT (Hodgson et al., 2014), OM (Rijgersberg et al., 2013), UCUM (Lefrançois et Zimmermann, 2018)

(3) SAREF recommends using the ontology OM (*Rijgersberg et al., 2013*)

Hodgson R., Keller P. J., Hodges J. & Spivak J. (2014). **Qudt-quantities, units, dimensions and data types ontologies**. USA. Rijgersberg H., Van assem M. & Top J. (2013). **Ontology of units of measure and related concepts**. Semantic Web 2012, 4(1) 3–13. Lefrancois M. & Zimmermann A.. (2018). **The unified code for units of measure in RDF: cdt:ucum and other UCUM Datatypes**. ESWC 2018.

Analysis (3)

	Requirement	SOSA/SSN	SAREF
	R6. Property	ssn:Property	saref:Property
1. Introduction	R6.1. Domain specific properties		
Context-aware Systems	R7. Feature of interest	sosa:FeatureOfInterest	
 3. Sensor Ontologies 4. Use Case: automatic Irrigation 	R7.1. Feature of interest depth	(1)	
	R8. Action	sosa:Procedure	saref:Function saref: Command
	R8.1. Domain specific actions		
5. Conclusion	R9. Crop	Platform or Fol?	

(1) SOSA/SSN recommends using geoSPARQL

SSN-2018

Monterey October 2018 18 **21**

Discussion

1. Introduction	 Comparison between SSN et SAREF SSN and SAREF are ontologies about sensor that cover generic use cases. They are not dedicated to our specific agricultural use case SSN et SAREF have no network description
2. Context-aware Systems	 SSN contains information about: Deployment Data flow and procedures
3. Sensor Ontologies	 Observed phenomenon SAREF contains information about:
automatic Irrigation	 Device function and services Device state and command = "open", "close"
5. Conclusion	
	IRRINOV Use Case
SSN-2018 Monterey October 2018	 Needs not covered: Deployment description = spatio temporal entity Network and node description Plot and Crop description (<i>cf Platform or FeatureOfInterest SSN</i>)

Conclusion

Synthesis

1. Introduction

Context-aware

Systems

3. Sensor

Ontologies

4. Use Case:

5. Conclusion

automatic

Irrigation

SSN-2018 Monterey October 2018

2.

- Requirements about smart irrigation use case
- Model of context to automate an irrigation system
- **SSN** and **SAREF** are two possible ontologies

Perspectives

- OEG:
 - SAREF Extension for agriculture: SAREF4AGRI
 - Ontologies network development

Irstea:

- Select SOSA/SSN for our irrigation use case
- Ontologies network development
- Rule to automate irrigation decision
- Develop an automatic irrigation system in AgroTechnoPole: experimental farm of Montoldre.

21

20

Thank you Merci Gracias Cảm ơn các bạn

This research has been partially funded by :

• The project ConnecSens which is co-financed by the french Auvergne Rhône-Alpes region via the program No1130, and by the European Union via the FEDER fund.

- the "I-Site Clermont Programme WOW! Wide Open to the World CAP20-25" (16-IDEX-0001)
- the ETSI project STF534 "SAREF extensions"
- the CPER research project
- the project CASDAR MULTIPASS

