
Optimising a Semantic IoT Data Hub

Ilias Tachmazidis, Sotiris Batsakis, John
Davies, Alistair Duke, Grigoris Antoniou
and Sandra Stincic Clarke

John Davies, BT

© British Telecommunications plc

• Motivation – de-siloization and data hubs

• Semantic lifting of IoT Data hub

• Optimization of SPARQL – SQL mapping

• Concluding Remarks

Overview

2

© British Telecommunications plc

Light
Sensor Bin

Usage

Parking
Sensor

Vehicle
Telemetry

RFID
Trace

Soil
Moisture

Enabling the IoT ecosystem

TVWS

MESH

SENSORS CONNECTIVITY DATA HUB APPLICATIONS

UNB

Smart
Parking

Driver
Assist

Waste Management

Tracing
Assets:
BT Trace

Smart Street
Lighting

Analytics

Dev Environment

IT Services

Information Spine

IoT Ecosystem

© British Telecommunications plc

© British Telecommunications plc

Data interoperability & IoT hubs

Data hubs
• provide economies of scale and uniform

access to data
• lower the barrier to participation, avoid

silos and foster innovation
• Key challenges

• Resource discovery and access (what data
does this hub have? how do I get it? what
other hubs are there?)

Hypercat is a specification which attempts
to address these issues

© British Telecommunications plc

HyperCat is:

• A machine-readable catalogue format for IoT data
• A JSON file format for cataloguing IoT resources -

a HyperCat file
• A web API for fetching, serving, searching and

updating HyperCat catalogues - The HyperCat
Web API

• A thin horizontal layer using technology well-
understood by web developers

• Publically available specification from BSI, some
open source tooling

© British Telecommunications plc

Catalogues and Resources

Servers (data hubs) provide catalogues of resources to clients
A catalogue is an array of URIs

© British Telecommunications plc

Resource Metadata

Each resource (URI) in the catalogue is annotated with
metadata (triples!)

© British Telecommunications plc

Hypercat fragment
air quality data feed in Milton Keynes

"items":[

{

"href":"http://api.stride-project.com/sensors/feeds/3bdae7b8-c4c6-

4701-81a7-e9ffcb47c6ac",

"i-object-metadata":[

{

"rel":"urn:X-hypercat:rels:hasDescription:en",

"val":"Air quality data from MK"

},

{

"rel":"urn:X-hypercat:rels:isContentType",

"val":"application/xml"

},

Associating metadata with the feed id, a URI pointing to the feed data
itself

© British Telecommunications plc

Semantic lifting: why?
Case Study: CityVerve City Concierge

• Helping visitors to the city

– Navigate & Access transport services

– Find out about cultural events

– Discover local businesses

– Community feedback and asset management

– Check the weather, air pollution, real-time traffic / travel

© British Telecommunications plc

• App delivery via smartphone, desktop and street furniture

• Requirement: combination of data from multiple sources

• (Federated) SPARQL queries allow integration of multiple
data sources e.g. external endpoint about events can be
queried

Semantic lifting: why?
Case Study: CityVerve City Concierge

© British Telecommunications plc

Semantic Enhancements to Data Hub : Catalogue
Semantic Lifting

• Existing DataHub provides:

– Hypercat Catalogue using specified JSON format

– Limited semantic capability

• Semantic enhancement allows:

– Items in the catalogue to be related to existing (domain)
ontologies supporting more powerful search and discovery

– Reasoning over catalogue items

• E.g. this feed about air temperature is also a feed about
weather

© British Telecommunications plc

HyperCat Catalogue Ontology

© British Telecommunications plc

Semantic Enhancements to Data Hub: Data Feeds
Semantic Lifting

• Existing DataHub provides:

– Egress of data from SQL DB via RESTful API in XML or JSON format

• Semantic enhancement allows:

– Data in the Data Hub to be related to existing (domain) ontologies
supporting

• Semantic enrichment (attaching ontological metadata, i.e. relate to
other (external) classes or properties)

• Rule-based reasoning (e.g. SWRL; define expected ranges, if
exceeded, then trigger action)

• Automatic translation of data to required form (e.g. units)

– Querying across discrete data feeds to identify relevant data

– Federated queries to additional external data (LoD Cloud)

© British Telecommunications plc

Id Title URL Status Private Website Email …

Sensor Feed table

Id Feed Tag Min Max Unit …

Sensor Stream table

Id Stream Feed Time Value Lat Lon …

Datapoint table

Data hub tables (fragment) based on EEML (eeml.org)

© British Telecommunications plc

BT Data Hub Ontology (3 principal types: sensors,
events, location data)

© British Telecommunications plc

HyperCat JSON to HyperCat RDF (N-Triples)
(generate RDF version of catalogue)

http://portal.bt-hypercat.com/cat

“rel”: “urn:X-hypercat:rels:isContentType”

“val”: “application/vnd.HyperCat.catalogue+json”

<http://portal.bt-hypercat.com/cat-rdf>

<http://portal.bt-hypercat.com/hypercat#isContentType>

“application/n-triples" .

© British Telecommunications plc

• RDF triple is provided within a single line, in N-Triples
format, namely:

– <subject> <predicate> <object>.

• The URI of a SensorFeed is generated by BT data hub as:
– http://api.bt-hypercat.com/sensors/feeds/feedID

• An RDF triple providing the type of a SensorFeed:
<http://api.bt-hypercat.com/sensors/feeds/feedID7>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed>

Data Translation

http://api.bt-hypercat.com/sensors/feeds/feedID

© British Telecommunications plc

HyperCat properties and their ontological
equivalents (rels -> properties)

MetadataAnnotator Properties

© British Telecommunications plc

SPARQL to SQL translation

• Uses Ontop Library

– http://ontop.inf.unibz.it/

• Protégé plugin used to map
SPARQL patterns to SQL queries

– Includes reasoner

• Parses mappings and ontology

• Translates queries to SQL

• Apache Jena used to offer
federated queries

http://ontop.inf.unibz.it/

© British Telecommunications plc

• Dynamic translation of SPARQL queries into SQL, using
Ontop

– OBDA tool - http://ontop.inf.unibz.it/

• Implicit information is extracted from the ontology
through reasoning

• Where richer domain ontologies are linked, semantically
richer information is extracted compared to the
knowledge that is stored in the relational database

Semantic Querying - SPARQL to SQL

http://ontop.inf.unibz.it/

© British Telecommunications plc

• Mapping ID: a unique id for a given mapping,

• Target (Triple Template): RDF triple pattern to be
generated in the answer (SQL variables are given in
braces, such as {feed.id})

• Source (SQL Query): SQL query to be created and
submitted to the relational database

Data Translation - SPARQL to SQL

Mapping ID mapping:SensorFeed

Target (Triple Template) bt-sensors:feeds/{feed.id} a bt-hypercat:SensorFeed

Source (SQL Query) SELECT feed.id FROM feed

URI prefixes:
bt-sensors: http://api.bt-hypercat.com/sensors/

bt-hypercat: http://portal.bt-hypercat.com/ontologies/bt-hypercat#

© British Telecommunications plc

Mapping Example

PREFIX hypercat: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#>

SELECT DISTINCT ?s

WHERE{ ?s a hypercat:Feed . }

• Ontop will match the triple pattern ``?s a hypercat:Feed'' with the mapping
``mapping:SensorFeed'' since class SensorFeed is subclass of Feed (and would
also map to equivalent mapping:EventFeed)

• An SQL query will be submitted to the relational database, while the
retrieved Ids (feed.id ?s) will be used in order to generate the response as
RDF triples following the triple template

• SQL not aware of subclasses of feed, so sensorfeed is mapped to feed

Mapping ID Mapping:SensorFeed

Target (triple template) bt-sensors:feeds/\{feed.id\}

a

bt-hypercat:SensorFeed .

Source (SQL Query) SELECT feed.id FROM

feed

© British Telecommunications plc

Ontop Protégé plug-in

Show me all feeds updated

in last 10 minutes

© British Telecommunications plc

Complex Query Example

Query description: Get distinct resources of type “Datapoint”, along with data

properties “datapoint_at_time”, and “datapoint_value” that are related to

them, where “datapoint_at_time” is dated between “2018-03-23T09:00:00Z”

and “2018-03-23T10:00:00Z”

Query text:
PREFIX hypercat: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#>

SELECT DISTINCT ?s ?o1 ?o2

WHERE{ ?s a hypercat:Datapoint .

?s hypercat:datapoint_at_time ?o1.

?s hypercat:datapoint_value ?o2.

FILTER (?o1>"2018-03-23T09:00:00Z"&&?o1 <"2018-03-23T10:00:00Z")

}

Mapping ID mapping:datapoint_value

Target (Triple

Template)

bt-

sensors:feeds/{datapoint.feed}/datastreams/{datapoint.stream}/

datapoints/{at_time}

bt-hypercat:datapoint_value

{datapoint.val} .

Source (SQL Query) SELECT datapoint.feed, datapoint.stream,

TO_TIMESTAMP(datapoint.at_time) AS at_time, datapoint.val

FROM datapoint

© British Telecommunications plc

Architectural Options

• Replication of data in
triple store

+ Queries require no
translation so should be
faster

- IoT sensor data quickly
becomes out of date

- Additional storage and
maintenance burden

• On demand query /
result translation

+ No additional storage
required

+ Freshest data always
available

- Translation overhead
means slower responses
to queries

© British Telecommunications plc

Optimising SPARQL to SQL endpoint

© British Telecommunications plc

Ontology Optimizations

• Class hierarchy restricted to classes explicitly used by Ontop for
mappings

– faster reasoning

– subclasses of Feed such as PublicTransportFeed also of Stream – not
used in mappings and were removed

• Similarly, property hierarchy restricted to properties explicitly
used by Ontop for mappings

• Domain and range assertions deleted from properties where
classes are already mapped, ensuring:

– duplicate reduction

– eg Datafeed class and a hasDatastream property, do not define
domain to be datafeed since duplicates will be generated

– Ontop attempts to extract as much information as possible during the
translation from SPARQL to SQL. Any possible mapping that could
derive Datafeed, will be translated into yet another SQL query

© British Telecommunications plc

SQL Plans Optimizations

• In Ontop, mappings with SQL functions such as:

– TO_TIMESTAMP() for time

– unnest() for arrays

– ST_AsText() for PostGIS geometry

are translated into separate subqueries

• Such subqueries may be inefficient, since:

– they are not indexed (executed over temporary SQL tables)

– they can lead to unnecessary self-joins

© British Telecommunications plc

SQL Plans Optimizations

• Solution:

– DB columns representing time or PostGIS geometry are
translated into a simpler form (such as WKT string
representation for geom objects)

– DB columns representing arrays need to be stored in a
separate SQL table

– Translate mappings that require the use of SQL functions into
mappings over SQL tables with simple data forms

© British Telecommunications plc

SQL Table Transformation

• Initial SQL table:

– TABLE feed(id uuid NOT NULL, updated bigint, tag character
varying[], the_geom geometry)

• Translated to 2 new tables

– TABLE sparql_feed(id uuid NOT NULL, updated character
varying, the_geom character varying);

– TABLE sparql_feed_tag(id uuid NOT NULL, tag character
varying NOT NULL); (one of these per array entry)

• More efficient because array processing etc is eliminated

• Processing cost moves from query time to assertion time

© British Telecommunications plc

SQL Data Transformation (1/2) to generate new
table

• INSERT INTO sparql_feed (id, updated, the_geom)

SELECT id,

TO_TIMESTAMP(feed.updated) AS updated,

ST_AsText(feed.the_geom) AS the_geom FROM feed

© British Telecommunications plc

SQL Data Transformation (2/2) to generate new
table

• INSERT INTO sparql_feed_tag (id, tag)

SELECT feed_tag.id, feed_tag.tag

FROM (SELECT feed.id,

unnest(feed.tag) AS tag

FROM feed) AS feed_tag

© British Telecommunications plc

Mappings Optimization (1/2)

• Target (Triple pattern):

bt-sensors:feeds/{sparql_feed.id}

bt-hypercat:feed updated

{sparql_feed.updated} .

• Sparql_feed.id is the key of SQL table sparql_feed

• Query is looking for feeds, therefore feed.id column should
be the table key

© British Telecommunications plc

Mappings Optimization (2/2)

• If the key contains more columns than those used in the
RDF triple pattern to be generated, then:

– self-joins cannot be eliminated

– each mapping is translated as a separate subquery

• Self-joins can be:

– Manageable for relatively small tables (containing thousands
of rows, if the table is indexed)

– Prohibitive for large tables (containing millions of rows)

• If you have a key across 2 columns (eg) but only 1 column
used to generate URI (i.e. feed.id), self-joins required

© British Telecommunications plc

SPARQL Query Optimizations (1/2) – expensive
operations

• Where possible, specify the predicate within each triple
pattern, since triple patterns such as "?s ?p ?o":

– will be translated using all available mappings (a UNION of all
defined mappings)

– will lead to an excessive SQL query plan

• Where feasible, avoid DISTINCT as:

– performance deteriorates

– final results are sorted and filtered for unique values at the
end of the SQL query plan

© British Telecommunications plc

SPARQL Query Optimizations (2/2)

• Use FILTER to retrieve specific Feeds:

– Restricting the search space early leads to more efficient SQL
query plans.

• Avoid OPTIONAL as:

– each OPTIONAL is translated into a LEFT OUTER JOIN

– If used, OPTIONAL should be put at the end of the query

• Use LIMIT as limiting the amount of required results could
speed up the query execution

© British Telecommunications plc

Semantic Technology and IoT

• W3C, IEEE, oneM2M and AIOTI

• Joint White Paper Semantic Interoperability for the Internet
of Things

– “The full value potential can only be unlocked if … ad-hoc, cross-

domain systems of IoT are able to establish conversations and

build understanding”

• Using semantic technology to provide machine-processable,
shared vocabularies with automated reasoning

• Hypercat – lightweight, domain-independent

• Hypercat-RDF – richer descriptions, link to domain-specific
vocabularies, federated querying, reasoning

© British Telecommunications plc

Concluding Remarks

• Data hubs can help remove silos and maximise value of data

– There may be additional value in using semantic tech

• SPARQL to SQL can be *very* slow

• Significant speed-up is possible

– Reliant on the ability/willingness to manually inspect and edit the
ontology and underlying database

• Next steps

– quantify the efficiency improvements

– identify further use cases where semantic tech adds value

– (understand relationship to SSN work!!)

© British Telecommunications plc

Thanks for your attention
john.nj.davies@bt.com

